• RU

  • UA

shapka_top1.jpg

+38 (044) 233-21-30
+38 (068) 855-48-42
+38 (066) 232-44-99
+38 (063) 233-21-30

 
E-mail: a-energo@ukr.net

Тепловой насос Mitsubishi Electric ZUBADAN

Особенности тепловых насосов ZUBADAN

Тепловые насосы ZUBADAN выпускаются в бытовой, полупромышленной и мультизональной модификациях.
Теплопроизводительность 1 системы может составлять от 3 до 63 кВт.
Минимальная температура наружного воздуха -25°С. При более низких температурах холодного периода года устанавливают, так называемые, бивалентные системы с дополнительным источником тепла. Такая комбинация позволяет, практически весь отопительный период использовать тепловой насос, и лишь в редкие холодные дни задействовать дополнительный источник тепла.
Предусмотрено центральное управление системой отопления и горячего водоснабжения, диспетчеризация и подключение в системы «умный дом».

Модель - Цена
Zubadan - Звоните
 

Прайс-лист

Zubadan

Zubadan EN

Стабильная теплопроизводительность

Компания Mitsubishi Electric представляет системы серии ZUBADAN Inverter (на японском языке это означает «супер обогрев»). Известно, что производительность тепловых насосов "воздух-вода", использующих для обогрева помещений низкопотенциальное тепло наружного воздуха, уменьшается при снижении температуры на улице. И это уменьшение весьма значительное: при температуре -20°С теплопроизводительность на 40% меньше номинального значения, указанного в спецификациях приборов и измеренного при температуре +7°С. Именно по этой причине воздушные тепловые насосы не рассматривают в странах с холодными зимами как полноценный нагревательный прибор. Отношение к ним коренным образом изменилось с появлением тепловых насосов серии ZUBADAN Inverter.

Теплопроизводительность полупромышленных систем Mitsubishi Electric серии ZUBADAN Inverter сохраняет номинальное значение вплоть до температуры наружного воздуха -15°С. При дальнейшем понижении температуры (завод-изготовитель гарантирует работоспособность системы до температуры -25°С) теплопроизводительность начинает уменьшаться. Но при этом сохраняется преимущество как перед обычными системами, так и перед энергоэффективными системами серии POWER Inverter.

   

Максимальная теплопроизводительность при пуске

Алгоритм управления цепью инжекции может быть оптимизирован с целью достижения максимальной теплопроизводительности, например, при пуске системы в холодном помещении. Другой режим, в котором важна максимальная производительность — это режим оттаивания наружного теплообменника (испарителя). Режим оттаивания, избежать которого в тепловых насосах с воздушным охлаждением невозможно, происходит быстро и совершенно незаметно для пользователя.

    

Схема серии тепловых насосов Mitsubishi Electric ZUBADAN

Серия

Наименование

Теплопроизводительность, кВт

Назначение

Бытовая серия

Наружный блок ZUBADAN MUZ-FD VABH

3,2

4,0

 

6,0

                           

• Воздушное отопление

Полупромышленная серия Mr. Slim Наружный блок ZUBADAN PUHZ-HRP          

8,0

   

11,2

 

14,0

             

• Воздушное отопление

• Нагрев (охлаждение) воды

Наружный блок ZUBADAN PUHZ-HRP200YKA

                       

23,0

         

• Нагрев (охлаждение) воды

Наружный блок POWER INVERTER PUHZ-RP        

7,0

8,0

   

11,2

 

14,0

16,0

23,0

 

27,0

     

• Воздушное отопление

• Нагрев (охлаждение) воды

Наружный блок POWER INVERTER PUHZ-W

   

5,0

       

9,0

                   

• Нагрев (охлаждение) воды

Наружный блок ZUBADAN PUHZ-HW

               

11,2

 

14,0

             

• Нагрев (охлаждение) воды

Гидромодули Stiebel Eltron

   

5,0

 

7,0

8,0

 

9,0

11,2

 

14,0

             

• Нагрев воды

Тепловая завеса PHV DXE

   

5,3

5,6

 

7,9

8,3

 

11,2

                 

• Тепловая завеса

Мультизональные VRF-системы City Multi G5 Наружный блок ZUBADAN PUHY-HP                          

25,0

 

31,5

50,0

63,0

• Воздушное отопление

• Нагрев (охлаждение) воды

Бустерный блок PWFY-P BU

                 

12,5

               

• Нагрев воды (до 70°С)

Теплообменный блок PWFY-P AU                  

12,5

     

25,0

       

• Нагрев (охлаждение) воды

Тепловая завеса VRF PHV DXE

   

5,3

5,6

 

7,9

8,3

 

11,2

                 

• Тепловая завеса

 

Принцип работы тепловых насосов

Второе начало термодинамики гласит: «Теплота самопроизвольно переходит от тел более нагретых к телам менее нагретым». А можно ли заставить тепло двигаться в обратном направлении? Да, но в этом случае потребуются дополнительные затраты энергии (работа).

Системы, которые переносят тепло в обратном направлении, часто называют тепловыми насосами. Тепловой насос может представлять собой парокомпрессионную холодильную установку, которая состоит из следующих основных компонентов: компрессор, конденсатор, расширительный вентиль и испаритель. Газообразный хладагент поступает на вход компрессора. Компрессор сжимает газ, при этом его давление и температура увеличиваются (универсальный газовый закон Менделеева—Клапейрона). Горячий газ подается в теплообменник, называемый конденсатором, в котором он охлаждается, передавая свое тепло воздуху или воде, и конденсируется — переходит в жидкое состояние. Далее на пути жидкости высокого давления установлен расширительный вентиль, понижающий давление хладагента. Компрессор и расширительный вентиль делят замкнутый гидравлический контур на две части: сторону высокого давления и сторону низкого давления. Проходя через расширительный вентиль, часть жидкости испаряется, и температура потока понижается.

Далее этот поток поступает в теплообменник (испаритель), связанный с окружающей средой (например, воздушный теплообменник на улице). При низком давлении жидкость испаряется (превращается в газ) при температуре ниже, чем температура наружного воздуха или грунта. В результате часть тепла наружного воздуха или грунта переходит во внутреннюю энергию хладагента. Газообразный хладагент вновь поступает в компрессор — контур замкнулся.

Можно сказать, что работа компрессора идет не столько на «производство» теплоты,сколько на ее перемещение. Поэтому, затрачивая всего 1 кВт электрической мощности на привод компрессора, можно получить теплопроизводительность конденсатора около 5 кВт.

Тепловой насос несложно заставить работать в обратном направлении, то есть использовать его для охлаждения воздуха в помещении летом.

Принцип получения тепла с помощью теплового насоса отличается от традиционных систем нагрева, основанных на сжигании газа или жидкого топлива, а также прямого преобразования электрической энергии в тепловую. В таких системах единица энергии энергоносителя преобразуется в неполную единицу тепловой энергии. В то время как тепловой насос, затрачивая единицу электрической энергии, «перекачивает» в помещение от 2 до 6 единиц тепловой энергии, забирая ее из наружного воздуха. Поэтому высокая эффективность воздушного теплового насоса делает естественным выбор в пользу таких систем для отопления помещений и нагрева воды на объектах, имеющих ограниченные энергоресурсы.

Дополнительный энергетический и экономический эффект применения тепловых насосов основан на создании контура утилизации (использования) тепла в рамках единой системы охлаждения, отопления и нагрева воды. Эта возможность востребована на объектах со значительным потреблением горячей воды, например, в ресторанах, фитнес-клубах, офисах и коттеджах.

                            "1 кВт"                                    +                        "4 кВт"                          =                                "5 кВт"
потребляемая электрическая мощность               теплота наружного воздуха                       теплопроизводительность

Коэффициент энергоэффективности теплового насоса

СОР = 5 / 1 кВт

Технологии тепловых насосов Mitsubishi Electric ZUBADAN

Для уменьшения размеров компрессоров компания Mitsubishi Electric применяет запатентованный метод термомеханической фиксации элементов компрессора внутри герметичного корпуса. Это позволяет в компактном корпусе наружного блока бытовой серии разместить мощный компрессор. Переразмеренный компрессор способен обеспечивать высокую теплопроизводительность при низкой температуре наружного воздуха. А благодаря инверторному приводу программно реализована стабильная производительность.

Цепь двухфазного впрыска: метод парожидкостной инжекции

Уникальная запатентованная технология двухфазного впрыска хладагента в компрессор обеспечивает стабильную теплопроизводительность при понижении температуры наружного воздуха.

 

В системах ZUBADAN Inverter применяется метод парожидкостной инжекции. В режиме обогрева давление жидкого хладагента, выходящего из конденсатора, роль которого выполняет теплообменник внутреннего блока, немного уменьшается с помощью расширительного вентиля LEV B. Парожидкостная смесь (точка 3) поступает в ресивер «Power Receiver». Внутри ресивера проходит линия всасывания, и осуществляется обмен теплотой с газообразным хладагентом низкого давления. За счет этого температура смеси снова понижается (точка 4), и жидкость поступает на выход ресивера. Далее некоторое количество жидкого хладагента ответвляется через расширительный вентиль LEV C в цепь инжекции - теплообменник HIC. Часть жидкости испаряется, а температура образующейся смеси понижается. За счет этого охлаждается основной поток жидкого хладагента, проходящий через теплообменник HIC (точка 5). После дросселирования с помощью расширительного вентиля LEV A (точка 6) смесь жидкого хладагента и образовавшегося в процессе понижения давления пара поступает в испаритель, то есть теплообменник наружного блока. За счет низкой температуры испарения тепло передается от наружного воздуха к хладагенту, и жидкая фаза в смеси полностью испаряется (точка 7). В результате прохода через трубу низкого давления в ресивере «Power Receiver», перегрев газообразного хладагента увеличивается, и он поступает в компрессор. Кроме того, этот ресивер сглаживает колебания промежуточного давления при флуктуациях внешней тепловой нагрузки, а также гарантирует подачу на расширительный вентиль цепи инжекции только жидкого хладагента, что стабилизирует работу этой цепи.

Часть жидкого хладагента, ответвленная от основного потока в цепь инжекции, превращается в парожидкостную смесь среднего давления. При этом температура смеси понижается, и она подается через специальный штуцер инжекции в компрессор, осуществляя полное промежуточное охлаждение хладагента в процессе сжатия и обеспечивая тем самым расчетную долговечность компрессора.

Расширительный вентиль LEV B задает величину переохлаждения хладагента в конденсаторе. Вентиль LEV A определяет перегрев в испарителе, а LEV C поддерживает температуру перегретого пара на выходе компрессора около 90°С. Это происходит за счет того, что, попадая через цепи инжекции в замкнутую область между спиралями компрессора, двухфазная смесь перемешивается с газообразным горячим хладагентом, и жидкость из смеси полностью испаряется. Температура газа понижается. Регулируя состав парожидкостной смеси, можно контролировать температуру нагнетания компрессора. Это позволяет не только избежать перегрева компрессора, но и оптимизировать теплопроизводительность конденсатора.

Теплообменник HIC

Теплообменник HIC в разрезе

Назначение: Жидкий хладагент частично испаряется, и двухфазная смесь жидкость-газ подается на вход инжекции компрессора.

Эффект: Увеличение энергоэффективности системы при работе цепи инжекции хладагента.

Инжекция жидкого хладагента создает существенную нагрузку на компрессор, снижая его энергетическую эффективность. Для уменьшения этой нагрузки введен теплообменник HIC. Передача теплоты между потоками хладагента с разными давлениями приводит к тому, что часть жидкости испаряется. Образовавшаяся парожидкостная смесь при инжекции в компрессор создает меньшую дополнительную нагрузку.

Компрессор со штуцером инжекции

Назначение: Увеличение расхода хладагента через компрессор.

Эффект: Увеличение теплопроизводительности при низкой температуре наружного воздуха. Повышение температуры воздуха на выходе внутреннего блока, а также сокращение длительности режима оттаивания.

Парожидкостная смесь, прошедшая теплообменник HIC, поступает через штуцер инжекции в компрессор. Таким образом, компрессор имеет два входа: штуцер всасывания и штуцер инжекции. Управляя расходом хладагента в цепи инжекции, удается увеличить циркуляцию хладагента через компрессор при низкой температуре наружного воздуха, тем самым повышая теплопроизводительность системы.

В верхней неподвижной спирали компрессора предусмотрены отверстия для впрыска хладагента на промежуточном этапе сжатия.